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NASA TT F-929.

e |

TO THE THEORY OF OPTIMAL FLIGHTS

V.S.Novoselov
4_ 19210
The author gives an exposition of the theory of optimal pro-
cesses, based on the methods of analytical dynamics. By in-
tegrating the variational formula of the action functional
over the trajectories or arcs of a special field of extremals,
the maximum principle is proved, and the sufficient conditions
of the extremum are established. The possible application of
the Hamilton-Jacobi method to the construction of optimal re-

gimes is pointed out; starting from that method, equations

bits are obtained.

iSection 1. The Conditions of Stationarity /ég ’/”—’___,,—J/

Given: a controllable device whose motion is described by the system of

.ordinary differential equations:

xy=F,(x;, e, 1) (i, j#’t 9, . e =1,2 (1.1)

where the u (t) are the controls or the control functions, which may be piece-
wise continuous; and t is the time.

The controls must satisfy the conditions:

Upy < Up < Upy, Up = cConSt, uk,=¢0ﬂ$t.r _ (1.2)
‘In particular, for all or some equations, the equalities w; = - ®, w2 = ® may
I

‘be satisfied.

APPLICATION OF THE METHODS OF ANALYTICAL DYNAMICS %/133

defining the optimal impulse transfers between coplanar or- . ...
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':of the end point by X .

' by the implicit conditions

s ,of the functional for all other admissible arcs.

o fwl p—
' termmate constants.

iformulas y = 4 (Y ), whose derivatives;m- vanish on the boundaries of the re-

. lgion (1.2). Examples of the introductiém of such controls are discussed in

'of time, can be introduced. To the funetion L, in that case, we must add the

NASA TT F-929.

We shall assume that to any admissible equation there corresponds aunlqué
Earc system (1.1), starting from the point with the coordinates X at the ini-

Etial time of motion to. The end-time will be denoted by T, and the coordinatesd

The boundary values of the variables, in the general case, are correlated

R,(x}, %], tu T)=0  (g=1, 2, .o I, (1.3)

‘fWe shall call a trajectory allowable or admissible if it satisfies the rela-
:tions (1.1) - (1.3).

|
‘ Required: to select the controls in such a manner that the functicnal

J-—jf.(x,, ug, 0)dt+Ry(x), 5T, t,, T), (1.1)

calculated for these controls shall be minimal as compared with the values /134

I

The functional J on the adxn1531ble arcs is equlvalent. to the functlonal

U=[Ldt4R, | (1o47)

‘where

L=F,+ Y\ (xi—F)), R=R,+Y%R,.

{Here, Ay are the explicit functions of time to be determined and Vo are inde-

From the controls uw we may pass to the new controls Yy by means of the

several papers (Bibl.l.2).
Instead of expressing y in terms 61‘ Y » & larger number of equations can

be considered and auxiliary indeterminate multipliers As+x , which are functions




= ,—E(M-::) (1.5)
! =t .
%for which the following notation has been adopted:

’ H:EA,.&,-—Lz—F,-i-Zx,F,, (1.6)

o

‘-~ in analytical mechanics (Bibl.3).

— Let the functional J have a smooth maximum. Then, by equatlng AU to zero,
%we arrive at the necessary condltlons of the extremum
‘ A= —‘;—g (=12 .0, (1.7)
=0 (k=12 .., 1) (1.8)

r
AR—}-(‘-ZI A Ax,— HAt)l’..—_O. (1.9)

-iwill be reduced to the form of

| sum r

» 2)‘,,4_‘ [uk—uk(Tkn-

: The total variation of the action functional will be defined by the for-
_mula

i=1 r}

If the controls Yy are not varied, then eq.(l.5) coincides with the for-

i

fmula of the total variation of the action functional, which is extensively used

-

|

By expressing, in eq.(1.9), the total variations of the variables x in

terms of isochronous variations by the formulas Axy = O6xg + x At, and equating

'
4

1to zero the terms in At and 8x; at the times t, and T, the conditions (1.9)

o 1
— Lo+ ,,,"+L . %1 (£) =0, - 135

a
(,,+ ) ’*x,m——. '

—\ 4 2% =0, 1’+-*_0
i dx,

3




' not have a smooth minimum. This is a rapid-action problem. In this case, F, 1

jand the conditions of transversality

i1 The function R,Win this case, is defined by the formula
| t

:tremum of the fundamental functional are obtained similarly.

The conditions (1.7), (1.8), and (i.lO) are necessary conditions for the |
;variational problem of Bolza (Bibl.s). If to is prescribed, the first equation
;of the system (1.10) must be omitted and if T is prescribed, the second equa-
Etion of that system.

‘ We now note the important problem when the functional to be minimized need
i

7‘ 1, R, = O, ASLdf_.AT At » SO that eq.(1l.5) takes the form

SR

al - r
5[\ 0_La,,_\(a,+0 )8x,-}dt+[21¢Axg—(l+H)At] =0,
{—1

[ t

Hence we obtain the equality Ho = Hr = -1, as well as egs.(1.7), (1.8)

T

fe

i
3
I
|
1
i
1

R=Yv,R,.

’ p=t
The necessary conditions for other optimal problems with a non-smooth ex-

i If a larger number of controls are being considered, then eqs.(1.8) are

replaced by the relations

oH du

au—,_)‘ =0, )‘MAK‘——“— : (1.81]

lem with only the original controls w . In this case, egs.(1l.8)must be re-

placed by the conditions

" oH
? d_uk'—o at . Uy < ug < U,
i
| oH OH
—o;;<0 al Up=ip, m>0 at Up==Upgy (1.811)

ik

AR-}-(‘Elk, Ax,) =0. (1.97)

Now let the controls Yy not be introduced, and let us investigate the prob-




S

:__lwhere h = const and to is the initial time of that phase.

.., constant on any such portion.

"'"'éwe obtain the well-known Weierstrass-Erdmann conditions of continuity of Ay and

Note 1. The system of equations (1.1) and (1.7) is a canonical system
W'.Lth the Hamiltonian H, the pulses \;, and the coordinates x; . This canonical
”;system differs from the usual canonical system in that H depends linearly on X4
,;and in that the additional variables w and Yy are present.

= Since the system of equations (1.l) and (1.7) is canonical, while the

7 boundary controls w: and w2 are constant, the total time derivative of the/136

function H will be equal to the partial time derivative of this function with
‘the group of variables x;, A\{, w, t. Hence, on any phase of the optimal tra-
:jectory with continuous controls, we shall have:

! n :
Cf o oF oF :
ty

(L]

If the functions F, and F;y do not explicitly depend on t, then H will be

Note 2. A point at which the controls undergo a discontinuity is called
{a corner. Let us vary the position and time of some corner point by the quan-
Jtities Axy and AT. Then, from eq.(1l.5), the variation of the fundamental func-

i

~itional U, taken on the optimal arc before and after the corner, will be

(E).,-Ax,-—HAt) —<Zx,Ax,-HAt) .
=0 -0 .

i1 iwi

where Bxi|_g=A8xif g =8xi At| _o=At[ o =Ax,

40

This variation of the functional must vanish for the optimal arc. Hence

T O RO SR

fH along the entire optimal arc.

f For this reason, when the functions F, and Fy are stationary, the Hamil~

%tonian H will be one and the same constant for the entire optimal arc. For ex-

5 I
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ﬂa.mple, for the rapid—-action problem, as follows from the above discussrior;,m it

fwill be equal to minus unity.
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) ,7 ;above two points. The additional restrictions on the choice of fo will be given

Section 2. The Maximum Principle

The method of integrating the variational formula of the action functional|

i iover the tubes of the trajectories is widely used in analytical mechanics (see

éBibl.L;). Let us apply it to find the necessary and sufficient conditions of
%the extremum.

Consider any admissible arc AB of the system (l.1) and (1.7) with the con-

_it,rols {wl}. This arc is made to pass through any two points A and B satisfying

leqs.(l.B) at certain times 'Eo and T. In particular, the points A and B, as

',vjwell as the times T, and E, may coincide with the initial and final positions
1wand times of the optimal arc, and the arc AB can differ from the optimal only

R fover a c‘érta'in 7interva1 for whlch >the controls {E‘} differ f'réilrr;"cher COi’ltI:OlS b

3{1&} of the optimal arc.
| Let us now pass through the point A and the initial point of the optimal

;arc in the (2n + 1)-dimensional space of configurations of the coordinates x,

s_ /impulses Ay and time t, a certain curve;CS:

_t?gx?(ap), l?:k?('xp), 0=t (ap, 1), wp=t,(p). (p:—.?v‘"‘ﬂ \

(2.1)
We note that for the time being eqs.(2.i) may be arbitrarily assigned, subject

: ot ;
ito the requirements tha.ta—> 0, and that the contour of 03 passes through the
v

‘below.

{(1.7). Let us now pass through points of the curve AB and that part of the

curve (¢ included between the initial point of the optimal curve and the point

We shall apply the term extremal to any arc of the system (l.l) and /137

%
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|

;fA, the extremals corresponding to controls equal to the controls '{uk }‘ on the
;optimal arc. Let us continue the contour (ﬂ beyond the point A so that the ex+

.étremals crossing the curve AB shall intersect it.

T , Let the relations (2.1) be such that for v = v' the curve G shall be

étransfomed by these extremals into the curve G passing through the end point

of the optimal arc and the point B. The contour of G will be defined by the

i general formulas
' xi:xi(xg (ap)s ap (t)v t)s

Ai:).i()\‘}(a’,)‘ x;)('lp). Ug (t)v t)y
t:_—t(ap, ‘UT), Ip=0a, (P’)

| (2.2)
Through the points of this segment of the curve G let us draw extremals
;with controls {ul} such that these extremals, for v = v, shall completely fill
that segment of the curve (; between the end point of the optimal arc and the
‘point B, if the following conditions are satisfied:

i, (£ (=, (1), V))=ug(t(z,(p), o),
ui(t (a,(1), ") =up(¢(a,(n), v7))-

\
|
|
[
4
1
‘ At any time t the boundary values for the controls {u'} will be {u } and

.? Let us now subject the choice of the curve (ﬁ and the controls { Ug' } to the

final condition:

| 1(lp.vr) ,b
AR+(§R Axl—HAt)’(ﬂp‘w) =0. (2.3}

N Let us write out the condition (2.3) in the expanded form:

2n

Z[id—f;lﬁ( x[, t, tr)+21{——‘5§— T 3,

Pl

¢ Ox ot |dap - ;
— L =0.
Z o"“pJ =0 (2.4)




o1

| The following notation has been used in eq.(2..):

=R np (), = o)), =t (e). ¥, )
X =%i(% (2 {EtERon) 40 (). 7))

(2.5]

A1l the above conditions can be satiéfied, because of the fact that the/138
;functional dependence of x; and \{ on @p is arbitrary, the functions o, of the
gparameter b and uw of the time t are arbitrary, and the function t(o,, v) is
ilikewise arbitrary.

We shall now integrate the expressions (1.5) in the above-mentioned field

of extremals with controls co:.ncldlng with the optn.mal controls {uk} We ob-

tain -
T n
_J Idt_ —d,fSH bxj— HAt 4 _ !El,Axi—HAt——
to J’\ * 1 )
5 zki"i—- ’ |
P =t (2.6)
Her: w=F(x;, E‘,,‘ f). t’t side is calculated on the optimal arc, the

first integral of the right side over the curve (i from the initial point of
the optimal arc to the point Aj; the secbnd integral, over the curve (; from thd
' end point of the optimal arc to the point B; and the third integral, over the

; trajectory AB.

The quantities Ty are defined by egs.(1l.1) in the form of

;The function H and the factors A; in the third integral of the right side are




‘calculated on the extremals of the field under consideration and the poinfs Worfﬁ

‘their intersection with the curve AB. The controls entering explicitly into H

|

itherefore coincide with the optimal controls {u J}.

x On integrating eq.(2.3) in the field of extremals with controls {uw'}, we

. i
S

i .
‘obtain e _ SR

? ty B o
o N Ax,— HAt— J 3 Ax;— HAt=
i Cp..g — t ‘ co 2 t i :

i1 AT

I

Rﬂ(x?' 'tirv to, T)‘__RIO(;;ov ;;r» [0' ?)‘
(2.7)

By definition of the function H [eq.(1.6)], we find

i

S Zlmi‘-:H(xi, M, W, O-+L(x;. N, ug, £). (2.8)

| o)

Starting out from egs.(le4'), (2.6) - (2.8), and remembering that the op-

—h i

23 timal arc and the arc AB bo:ch sa.tisfy the conditions (1.3), we have:

- { i
23 j
!

\ Hence we arrive at thej necessary condition for the fundamental functional |
%to be minimum. This condition is that H shall be maximum on the optimal arec:
L Hixg b, g 0> H(xp v ng 8. (2.10)
The condition (2.10) is the fundamental condition of L.S.Pontryagin's /139
i, {ma.ximum principle (Bibl.5) and is equivalent to the necessary Weierstrass con-
w: sdition (Bibl.4). More particularly, the conditions (1.8), (1.8') and (1.8")
0 |follow from the relation (2.10).

Let condition (2.10) be satisfied for any controls {4 }, some controls {u/l,

and for x; and A\, which are a solution of egs.(1.1), (1.7) for any xi, A\{ and

for these controls{w}. If, in this case, on some arc with the controls {ul,
éthe conditions (1.1) - (1.3), (1.7), and (1.9) are satisfied, then, as shown by

;the above discussion, that arc will be optimal.

i
|

' We have reached the conclusion that the maximality of H for certain con-

i

9 ]
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‘at the necessary condition (2.10).

‘are to be considered as explicit functions of time. This canonical system may

?be solved by the Hamilton-Jacobi method.

J

:canonical equation with the Hamiltonian function (1.6) with controls {u } which

trols {u } with x and A; that are a solution of the sysﬁem (1.1) and (1.7),m
for arbitrary initial values, and the satisfaction of the conditions (1.1) -
(1.3), (1.7), and (1.9) for a trajectory with these controls, are sufficient
conditions for the optimality of these controls.

Note. The necessity of condition (2.10) for an optimal arc can be shown
by means of the following simple construction:

Consider the field of extremals corresponding to controls equal to the op-
timal controls {u } and to the arc AB, differing from the optimal only over a
certain internal interval which can be as small as may be desired. Let this
interval include the point (%, Ay, t) for which condition (2.10) is to be
proved. Let us draw the arc AB outside the optimal arc such that it can be
either tangent to certain extremals or intersect them, but necessarily at two

pointse.

On integrating eq.(1l.5) over the extremals intersecting the arc AB, we ob-

tain, instead of eq.(2.6),

r T =n »

—(rat=—, f( ‘)\,'n“-—H)dt. (2.61)
to {

n‘*

By means of egs.(2.6') and (2.8) we arrive at eq.(2.9), and consequently also

Section 3. Application of the Hamilton-Jacobi Method

The optimal trajectory {x } and the indeterminate factors {A;} satisfy the

For this purpose, let us set up the partial differential equation

10




oW oW - ‘
G T H(x gm0, f)=0. (3.1)

On the basis of eq.(1l.6), eq.(3.l)‘will be of the form

W oW ;
j e > ~—o—x-l-F,*=Fo. " (3.17)
j i1 : ,

9 éEquation (3.1') shows that the Hamiltén—Jacébi eéuation for the problem of the
gselection of optimum controls is a first-order linear partial differential equﬁ
;tion.

- : Let, for certain w (t), the following complete integral of eq.(3.1) be /14

;found:

W= u’/'(.\‘;, a,, t)+a0' (3 2)

‘where a; are n independent constants and a, is an additive constant. Then, thg

:1,2;solution of egs.(l.1l) and (1.7) for these controls w (t) is given by

R .

AR I = ow A
2o oay =00 (3.3)
- ' ow o o o

P ax; e . (3.4)

o ;where by are new independent constants.

It is generally known that the complete integral of eq.(3.1l) is determined
:with an accuracy to an additive constant, by the action integral. We, there~
B ;fore, have !
, w/:_—_\ Ldt +-a,.
o
*9 IThe function R of eq.(l.4') depends on the initial and final values of the var-

i1 |iables and will be a certain additive constant. Hence, the functional to be

‘minimized will be equal, with accuracy to within an additive constant, to the
icomplete integral of eg.(3.1).

; On the basis of egs.(3.1) and (3.4), for any explicit representation of a

%functional on the trajectories of the system (l.1) and (1.7), we have the re-

:lations



~" ~orbits in the gravitational field of a spherosymmetric central body.

w dU T T
o e a = -—”‘H. , (3.5)

Equations (3.5) may be used to work out programs of numerical solution of

S

.\ rivariational problems, for instance, by the divergence method (Bibl.6).

g;f If a4 = X? and by = x?, then the complete integral of the Hamilton-Jacobi

W) 4

.y, equations is written in the form of (Bibl.7)

. i
id :
i

{ n S
o Wix;, M, )= Lde+ Y a8 (3.6]

im=l

‘Section Lo Optimal Impulse Transfers between Coplanar Orbits

As an example of the application of the Hamilton—Jacobi"method, let us

"find the conditions of optimal impulsive coplanar transfers between elliptical

|

i Let us consider the motion of a rocket ship in a polar coordinate system

D T
R

- i(r, ®) with its origin at the center point of the central body. The equations

"> of motion will be of the form

‘where kK° is the gravitational constant; v and vy are the projections of the
%:;”ﬁvelocity of the ship on the radius vector and transversal, respectively; B =
;; = -4 1n m; ur is the constant effective exhaust velocity; m is the mass; y is

+0

.1 |the angle between the thrust and the raﬁius vector, measured in the direc- /141

‘tion from the radius vector to the velocity of motion of the ship.

For any possible interplanetary flights, the acceleration B developed by

.modern rocket engines considerably exceeds the other terms on the right sides
iof egs.(4.l). Therefore, for the boost phase, let us take the equations of thd

/impulsive criterion of velocity:
i

12
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el

i lwhere my is the initial mass and m¢ the final mass of the ship, while t, and T

. }or (L+17), restriction of the control of B in the form of eq.(L4.2), and the

land the subscript K those of the terminal orbit. The following notation is

7 used in eqs.(l,,.h) and (L.5): e = eccentricity; p = parameter; w = angular dis-

fr= et s =i =0, §=0. G
Starting out from the capabilities of rocket englneer:mg and the allowabld
;iaccelerations, a restriction on the control relative to the value of B must be
:fadOpted:
‘ (4.2)

|
T The equations of motion on the passive phases are obtained from the systen
O

(h 1) by setting B = O.
Understanding the term optimal in the sense of minimizing the consumption

'of mass, we shall minimize the functional

il

5?45 4 in(mm7t). (1.3)

‘are the respective times of start and finish.

I

boundary conditions (Bibl.8):

(et
vp=ke ptisin f vs=kpProt ro=p, (1 +e cos £yl Ao, (4+5)

Here the subscript H indicates the characteristics of the initial orbit

tance of the pericenter from the polar #xis; f = true anomaly.

In the case under consideration, Rs = O and the boundary conditions are
expressed by the explicit relations (4.4) and (4.5). For this reason we shall
inot introduce the indeterminate constants vy, and shall use the conditions of

transversa.llty in the general form:

N A'v,.—{-—)\ Av, |-} Ar—[—k Ap—

13

o

i
i

The functional (4.3) must be minimized by means of the constraints (4.1) |



i the problem we do not consider the specific motions along the limiting orbits,
180 that the variations of Afy, Afx, Aty and At will be independent. Hence we

obtain Hs, Hx = O and, since egs.(4.l) are stationary, we obtain H = O along

where Fi and F, are the right sides of eqs.(h.l) for the initial and final or-

| bits, respectively. o . e S

cd
t

Here the total variations of the variables are calculated along tﬂ;ﬁiiﬁifz

-ing orbits. In view of eqs.(4.4) and (4.5), the variations of all variables

. except At are expressed respectively in terms of Afy and Afx. In formulating

1
|

the entire optimal trajectory. The variations of velocities and coordinates on

‘the limiting orbits are proportional to the right sides of egs.(4.1), calcu-
‘lated on the limiting orbits for B =

We arrive at the following conditions of transversality:

n n

Y NFT = ¥ 15 =0, ﬂ (4+6)

Starting out from egs.(L.1l?') let us set up the function H for the ac- [142

H i
3‘ 1
'tive phases: !

é H=}3(—1+)cosp+2,sin¥). (h-?i

We now write the Hamilton-Jacobi equation:

(L.8)

We recall the conditions of maximum H on the optimal trajectory. Writing

jout the first and second partial derlvatlves of the function (4.7) with respect

ETR S




'
e e bt b canea

lto 8 and ¥, we come to the conclusion that the active phases can include the

o

?trajectories: (a) of the programmed thrust at

Lor A, ==cosyp, Ay—=sin{; ‘ (4+9)

t
i

?(b) phases of maximum reactive acceleration G at - ?if‘“o Slnce H=0

4and H is a linear homogeneous function of B the 51gn of 1nequa11ty for the

;derivatlve gg is dropped and the indeterminate multipliers here are also de-
jterndned from eqs.(4.9).
| Equations (4.8) and (4.9) show that the inclination angle ¥ of the thrust

;remains constant for any powered section of the trajectory. For each such

_phase or section, egs.(4.1') and (4.8) will yield

(L.1Q

fduring the active phase is determined by the required increment of velocity and
Edoes not depend on the particular law of burninge.

On the passive phases, the controls over é and ¥ are shut down. These
%phases admit of the maximum principle. Let us find an expression for the inde-

terminate factors on the passive phases by the Hamilton-Jacobi method.

The Hamilton-Jacobi equation is offthe form

(4.11)

The complete integral is
W=a|t+a'2?+¢(vrv % r, al' % ﬁg
where ¢ is a certain function of these arguments.

| On the basis of eqg.(3.4), this yields [

It follows more particularly from eqs«(#.10) that the consumption of mass i




timal trajectory.

I
i
H
!
:
|
l

~-ing form:

‘ ":pericenter of the transitional elliptical orbit from the polar axis, and f is

»fthe true anomaly on this orbit.

_of the relations (Bibl.8):

1

|where ty is the time of transit through the pericenter and a is the semi-ma jor

~‘axis, which for an elliptical orbit is equal to p(l - & )*

fFor this reason, Ay = const for both passive and activérphases. VE}7§ir£ﬁé”;£Ww

;the Welerstrass-Erdmann conditions, A¢ is the same constant over the entire op-

For the passive phases, we have B = O, hence L = O, and by eq.(3.6) the

complete integral is written in the form of

W, fym Y 00 (4.12)

i=1
Starting from eq.(3.4), we obtain expressions for the indeterminate multi-
‘pliers:

(L413)

Let us take the solution of eqs.(4.1) on the passive phases in the follow-

= kep i f. v,zkp"%wecosﬂ r=p(l

where e, p, and @ are the eccentricity, parameter, and angular distance of the

i

We note that the true anomaly is expressed in terms of the time t by means

Y p= (4+15)

wi=) i Ewt -

Let us denote by s (k =1, 2, 3, A) the Keplerian elements e, p, @ and tye.

gEquation (4,+12) then takes the form of

i

(4.16)

16
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If we put t = to in egs.(L.14) and (4.15), we arrive at the expressions

(Le17)

1To obtain eqs.(h.lé), the Keplerian elements must be represented in terms of x

< by the aid of eqse(4e14) and (4.15). Here, on the basis of egs.(4.1l5), we shall

1 iput

iwhere Y is a certain function of these variables.
The quantities e, p, w, and f will now be expressed on the basis of

Eeqs.(h.lh), explicitly in terms of x;. We will, therefcre, have the identities

o ol o0) =3 4 (5 -5 (4+18)

On the basis of eq.(4.18) we have

B U

;= Equation (4.12) and the Hamilton-Jacobi equation ﬁlllflnally y1elciA4 = —H.&A -

' ZIn this case, therefore, Ay = 0, and the expressions for the indeterminate mul-

‘tipliers will contain only three indeterminate constants. ;
5 |

To determine the derivatives W s let us differentiate eq.(h.ll,) with

< ;respect to xg« We then have

osinf o
dxl - Blh

» The coefficients Byy vanish for i # j, Biy = Bez = K p1/2, Bas =-pt(1 +

+ e cos f)z,B“ = 1.

,\‘; Making use of the obvious equality

RV




and assuming that e # O, we obtain, after simple calculations, i

9
dv,

-_-.Jk"p"'*’ sin f, %—? 0,

Ow

E:e Kl phsin £ (2+-e cos ), Rad

~;— = 2(1 +ecnsf), Fr' =e'psin f(1 4 cosf),

e _p_, o

=0,

o9~ O¢ %

Equations (4.19) are of great independent significance, since they deter-

m:me the variation of the elements e, p, W for a small variation of the posi-

ft.ion of the point and of the velocity of the satellite going into orbit.
|
' Introducing the following notation for new constants:

A=—Ikle ip A, B=Fk7e pRA, D=Fk e p'? (e} — 1) A+ 2k pRA,, |

éwe shall have, from egs.(i.16) and {4.19):

==A cos f+ Besin f,

A4 = - kep“”A.

mfdm"-%-cosf o5

= k-"e"lf”’ cos f,

. L ‘w ( | s
_,__ e, 2k“lp312(1 +ecos 7,
= p(e+cosf)(1 +€cosf)

A=

M-—— — Asin f(2+ecos f)+ B (1 +ecos f) 4D (1 +ecos f),
AN=—kp~32(14-ecosf) [Asinf(l4ecosf)1— .
—B—D(1+}ecosf)?],

(L.19)

(4+20]

E Bl
.
H

The constants A, B and D coincide with the Lawden constants (Bibl.9) for a

inoncircular transfer orbit. Our discussion has now established the connection

Eof the Lawden constants with )\? and the elements of the transfer orbit. Since

!
1
[
i

)
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our study was in a polar coordinate system,

egqs.(4+.20) turned out simpler /I

' than Lawden's corresponding formulas (Bibl.9) for the indeterminate multlpliers

a5




‘on a noncircular orbit.

~suitable for any transfer orbit, including a circular one, for which e = O.

Let us obtain expressions for the indeterminate multipliers that will be

Substituting for e and @ the new elements q = e cos w and £ = e sin w,

, fwe now write egs.(4.14) in the form of

Vr=kp~'?(qsinp—Llcosg), v,=kp'?(14-qcose+Ising),

r=p(1 +qco<v+lslncp)"

Let us take p, q, ¢, and % as the elements s in eqg.(4.6).

| (4e21)

Differentiating egqs.(4.21) with respect to x , we obtain equations for

determining the partial derivatives:

__L -1 —_ 9 9q 9 __ .
P~ (gsing—Llcosg) 5 +5iﬂ?§;“c°5‘?;,;‘,--cu.

o —l(1+qcosp+lsin?)—-+cos?3, +S"‘Vd = Cu,

—p (1=

The matrix of coefficients HC“ H is of the form

kp2 0 0 -
0 kpin 0
| 0 0 —p'(14gcose+Ising)?

Hence, we find the following expressions for the derivatives:

a ol _
oq = k71p2sin ¢, b-l—=—-=-k 1p'2 cos o,

| 35_— kp'2 [cos ¢ - (cos 9+ ¢) (1 + g cos ¢+ I sin. 9)"!,,

ol

———f"*’(cosv—!—q) (a +qcosv+lslnv)

__'_.',ﬁ‘(sm ¢+1)(1+4gcosp+Isineg),

.91:—- 6—1:
oo L o 7

Equations (L.21) determine the variation of elements g and

variation in the velocity and position of the ship.
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%—-—k‘pm [sing 4 (sine4- ) (1 +qcos?+ o

coscp-l-lsinv)d -{—cosrpd +sln90 “-—C,,

q

@sv—-lsinv
wsg:s,!gv“‘lcos?
- gsing—{cose

p——

for a small




Introducing the following notation for constants:
M=—k"p'?A,, N=Fk'p'PA, Q=2kp"A,

QV,EWe shall have, from egs.(4.16) and (4.21),
S ;

- 4 M=Mcosp4 Nsing,
+qcos?+lsin"
sl 9)] +- N [2¢

S

-

=
SV IY SOV R S

% Putting g =4 = 0 in eqgs.(}4.22), we obtain, for a circular transfer orbit

o Ai=Mcose+4Nsine,

i A, = — 2Msine-+2N cos ¢4 Q, ' (4+23)
; Ay==—kp~R(Msinp— Ncos ¢—Q),
‘ ' A= 0. - \

The constants M, N, and Q herevcoincide with the Lawden constants (Bibl.9)
iii;jfor the case of a circular orbit. Equations (4.23) are simpler than the cor-
i; ;jresponding Lawden formulas. The difference between these also consists in the
iiriéfact that our formulas,instead of the true anomaly f, use the latitute argu-

» fément ® which corresponds better to a circular transfer orbit. The present

Q{ fstudy has also established the connection of the Lawden constants with A{ and
» _;the elements of a circular transfer orhit.

oot

_ The general representation [eq.(4.22)] obtained above is particularly
a!,iéconvenient for considering quasicirculai transfer orbits.
s E The continuity of the indeterminate multipliers, their explicit expres-

i
1

u

sions given by egs.(4.9) and (4.22), the boundary conditions (L.4) - (4.5),
: ,;the conditions (4.10) for velocity jumps for each active phase, and the condi-
'?tions (L+6) of transversality, yield a number of equations sufficient for de-

;terndning all unknown quantities for a prescribed number of impulses.

An investigation of these equations would be a separate problem, beyond

%the scope of this paper.

20
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